
Last chance! 50% off unlimited learning
Sale ends in
scuo.random(SCUO, phi.Obs = NULL, meanlog = .CF.PARAM$phi.meanlog, sdlog = .CF.PARAM$phi.sdlog)
calc_scuo_values()
.phi.Obs
.SCUO
indices (outputs of
calc_scuo_values()
)
computes the rank of them, generates log normal random variables, and
replaces SCUO
indices by those variables in the same rank orders.
Typically, these random variables are used to replace expression values
when either no expression is observed or for the purpose of model validation. If phi.Obs
is provided, the mean and std of log(phi.Obs)
are used
for log normal random variables. Otherwise, menalog
and sdlog
are used.
The default meanlog
and sdlog
was estimated from
yassour
dataset.
calc_scuo_values()
, yassour
.
## Not run:
# suppressMessages(library(cubfits, quietly = TRUE))
#
# ### example dataset.
# y.scuo <- convert.y.to.scuo(ex.train$y)
# SCUO <- calc_scuo_values(y.scuo)$SCUO
# plotprxy(ex.train$phi.Obs, SCUO)
#
# ### yassour dataset.
# GM <- apply(yassour[, -1], 1, function(x) exp(mean(log(x[x != 0]))))
# phi.Obs <- GM / sum(GM) * 15000
# mean(log(phi.Obs))
# sd(log(phi.Obs))
# ret <- scuo.random(SCUO, meanlog = -0.441473, sdlog = 1.393285)
# plotprxy(ret, SCUO)
# ## End(Not run)
Run the code above in your browser using DataLab